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Reprecentations of Children's Addition and Subtraction Concepts

Ahstract

.Tﬁé counting unit types, counting perccptual, motor, verbal,; and

abstract unit items have been identified w'-h children's schemes

for adding and subtracting. The observations on eight first- and
second-graders involved in a three-week téachihg:ékpérfmént,

six representations of their subtraction concepts. One or more

specific schemes have been identified with each representation:

tevels; with the children capable of Using the more advanced unit
types,; constructing the highér level scheémes. Children who
Cbhétthtéd higher level schemes also solved all kinds of addition
.dnd subtraction problems, which involved larger numbers.
Children's uses of their schemes reflected the awareness of the
‘difficilty of a problem, and their basic understanding of adding

and subtracting.



Repiresentations of Children's Addition and Subtraction Concepts

Benjamin A: Eshun

University of Georgia

Despite the long history of educational reforms the
educating children in schools, even when we restrict our

concern to a subject area like mathematics. What are the givens

i:. the school setting? Is it the child or a predetermined scope
and sequence of a mathematics curriculum? Let us quickly cast
our mind into a classrcom where a teacher is helping a child;

frustrated because despite all her efforts and encouragement
little fendry can simply not Utter "6-7,8,9" and give "9" as
the answer. Hendry has to use blocks, count out six blocks and
then count three more blocks in a separate location. Finally
ho makes a single heap of all the counted blocks and
sequentially touches the blocks while uttering "1,2,3 ... 9".
Thé teacher's intention is to teach Hendry to count on from "6"

but the latter can only count perceptual items (blocks,

utterances.

The above episode suépéfté the view that teachers need to
be fully aware of the child's processes for representing
addition and subtraction of numbers; as well as the unit items
the chila is capable of creating while counting: It is this
knowledge that would enable the teacher to provide appropriate

i
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opportunitics that could help to bring out the most prominent
mathematical knowledge in thc child - an ideal goal which
Rireenko (1959) has called "pedagogical optimism" (p. 19).
Purpose

The primary objective of tlie study reported in this paper
is to provide an experimental model of children's
representations of addition and subtraction concepts viewed as

e

[agl
oyl

constructaed schemes. The study will also investigate

model, Tn particular, we will investigate how children who
possecs different counting schemes differ in their addition
problers children solve correlate with their addition concepts

Rationale
On every occasion that the child attempts to solve or
correctly solves an addition or a subtraction problem; the

child reveals something about her knowledge of the arithmetical

Tt i§ not that the child creates or constructs a piecé of
kriowledge according to theé rules and structure of the
mathemaﬁics.she is starting to learn; rather the child
re—prescﬁt% the mathematical operation (an internalized
activity in the Piagetian sense) in whatever way she can. This
global re-presentation is a reflection of the way the child, at

that moment in her development, organizes her experience.



The Piagetian prin.iple is taken that the child
nocessarily has to construct her own representations of reality
- cven if, at some later point £ development, the child's
subjective reality does become or is expected to be compatible
with the reality of the social group in which she operates.
Steffe, von Glasersfeld, Rithards, & Cobb (1983) have
deimonstrated that the concept of unit, that forms the basis of
all numerical operations and arithmetic skills is developed out
of the child's own constructions which pass through a sequence
of stages. The counting types of Steffe et al. (1983) provide a

firm foundation from which to explore the steps children take

recommendations made by researchers investigating children's
concepts or skills for solving addition and subtractioii
problems. Brownell (19%28) addressed this need in the following.

teachers must keep fully informed concerning the
stages of development of the pupils’ by means of
contirfuous study ... of the procedures and processes
which the pupils employ in dealing with numbers (p. 143).
Ames (1951) found the need to make a similar recommendation,
Not only is it important to know more about each
individual child's developmental rate in regard

"
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to mathematics, but also we should know more about

ecach individual child's particular processes,

number systems; ::: and devices which he uses in

arriving at answers to arithmetiec problems (p.: 26).
they have observed significant individual differences regarding
the processes and the strategies their pupils use to solve
addition and subtracticn pfébiéms; despite the common '
instruction the teachers provide. Appropriate instruction,
which takes the children's differences into consideration
requires knowledge of the addition and subtraction concepts

& Ginsburg; 1981; 1Ilg & Ames, 1951; Siegler & Robinson, 1982;
Steffe, Thompson, & Richards, 1982; Steffe, von Glasersfeld,
Richards, & Cobb, 1983; Suppes & Grden, 1967; Woods, Resnick, &

Grocn, 1975) have attempted to map the processes children use
to solve addition and subtraction problems for more than half a
century. Despite the well-documented st%ategies that children
iise to solve these prublems, Carpenter and Moser (1981) have
rightly pointed out that there is "a great deal that is yet
unknown about how addition and subtraction concepts and skills:
.are acquired" (p. 62):

providing models that are based on.minute analyses of
observations of children's constructive activities in the
context of solving problems is one viable approach to
clucidating children's acquisition of adding and subtracting

schemes, -No two children may be exactly the same with respect

- 4 =< v




to their intellectual development. While thére always may be
some significant differences in the construction of adding and
subtracting schemes by any two childrén, & teacher's knowledge
of the ways and means of the acquisition of these schemes may
g%éatiy facilitate her ability to foster the adaptations made
by particulat children.

The teacher with the goal of fostering adaptation should
be generat;ng hypotheses about her children's actions;

interpreting their behavior, and evaluating these hypotheses to

immediately, her knowledge and the interpretation of her
observations to assist the children she is teaching. The
significance of the study is enhanced by the benefit a teacher
can derive from the models provided in her diagnosis and
diréctiow of children's construction of addition and
subtraction concepts: The inclusion of children's counting unit
types in
concepts

into how

The Child
Psychologists and educators have long recognized the child
as the center of interest (Knight, 1930, p. 3) in education.,

Some will go further and claim the child’as zlso the most




important component of euucation (Gattegno, 1970, p. ii).
Knight (1930a) rightly points out that it is ihéﬁe@déEé to base
teaching solely on the “interest and felt needs® of the child.
Rt he favors strict adherence to the organized "curriculum

1aid down before the child enters school" (p. 6). Hence, the
curriculum beécomes the moct-important component and not the
child as suggested by Gattegno (1970). Focusing on the child
should result in organizinyg the curriculum not beforehand; but
according to the mental powers of the child. Gattegno (1970)
calls these powers the "functionings of children" (p. 7). To

to make transformations, the power to make abstractions, and
the power of imagery: '
Knowledge

Focusing on the menial powers of the child leads to the

primary concern of synchronizing teaching with children's

students. The most important question is, "how does the child
come to have particular knowledge"? The answer we give to this
'question depends on our view of the rature of knowledge.

In tiwe Accade from he 1970 to 198¢ the hopes the "New
Math" had kindled for tne teaching and learning of mathematics
aisappearéa..fhe mathematics education community which; in the

sixties, appeared to know "where it was going" gradualiy



mathematics than the children of previous decades: In fact;

(lurd, 1982). Complaceny had to give way to a period of
“groping for a clearer [ocus and sense of direction" (Hill,
1983, p. 1): The failure of the New Math movement was
ironically due partly to the apparent success claimed by .the

knowledge children necded to acquire. As von Glasersfeld put
it:

Educators were concerned with getting knowledge
into the heads of their students; and educational
researchers were concerned with finding better
ways of doing it. There = was then, little if any
uncertainty as to what the knowledge was that
students should acquire; and there was no_doubt
at all that; in one way or another; knowledge
could be transferred from. a teacher to aestudent.
The only question was; which might be the best
way to implement that transfer .(p. 42}).

This approach to teaching is based on the assumption that the

Gattegno (1970) characterizes this approach as the
"subordination of learning to teaching" (p. 5), and illustrates
it as in Figure 1 (p. 3). In this scenario, knowledge is
supposed %o exist independently of the student and can be
_is supposed to neced only memory in order to receive knowledge

(Gattegno, 1970; pp. 3-4).:




voli Glasersfeld (1983) provides a sketchy but adequate
Nistorical roview of the traditional conception of knowledge.
lic concluded that a dilema arises when we accept the
traditional conception of knowledge "that requires a match or

dence betwcen (our) cognitive structures and what

these structiires drc supposéd to represent"™ (p. 48), because in
this scenario, "truth" becomes the perfect match, that is, a
flawless rgpresentation. He ardues that; since we are logically
real world and its presumed representacion, there is no way out
of the dilema (p. 48). However, he suggests we can resolve our
cxperiential problems by adopting the kind of knowledge that
fits human observations: From this perspective; the worid we
live in is always ond necessarily the world as we conceptualize
it;.But we still cannot make "facts" as we like. For as von

Glasersfelcd put it:

They are viable facts as long as they do not clash
with experience, as long as they remain tenable in

the sensc that they continue to do’ what we expect

them to do (p: 51):

1f we take this latter view of knowledge then our approach

Gattegno (197C) calls "the subordination of teaching to

learning" (p. 14), which he illustrates as in Figure 2 (p. 14).

1
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insert Figure 2 abivut here

Tt should be eniphasized, however, that the communication
between the student and the- teacheér is crucial even though the
cliild has to constrict its owii knowledge. We shall see the need
for tliis cqmmunication later when we consider the ‘teacher's
role in the child's learning situation.

Theories of lLearning

Since thie turn of the century psychologists have
propounded a number of theories and cxplicated how these
thébriég could optimize the learning of mathematics (especially
aFithietic). The connectionism of Thorndike (1922) attracted
many disciples. Knight (1930b) based his treatment of teaching
metgods on Thorndike's connectionism and provided extensive
treatment of drill on the basic facts: The Gestalt psychology

solving and understanding of mathematical stuctures than the
conncctionism of Thorndike (1922) could explain. Katona (1940 /
; 1967) cxtended the principles of Gestalt psychology to '
‘explicate the distinction between "senseléss" (rote) and
"meaningful" (understanding) learning. An important issue in
learning theories is the transfer of knowledge gained in
o learning one task to anothér. Gagne (1962, 1970) initiated the

cumulative lcarning théory in which he explicates how complex




skills can be analyzed into ordered subskills; or learning
hierarchies:

Piaget (1964) has not provided any explicit theory of
Tearning that can be applied directly for instruction. His

rather than the widely held opinion that development is ‘a sum
of discrete learning experiences (p. 8). Piaget (1970b) has
identified. three categories and meanings of experiénce that

contribute to cognitive development. First, there is simple
exercise in which the child acts on objects witholut éxtracting
any knowledge from them. But the exercise may, if exploratory
in nature, provide necw €xogenous information as well as
consolidate the child's activity. Second, there is physical
experience which enables the child to extract information from
the .objects themselves using simple (empirical) abstraction.
Here the child discovers new properties of the objects while it
diéregards‘others (e.g. discover wéight while disregarding
color). Third; there is logico-mathematical experience which 1s
an important component in cognitive development and allows the
child to 8i§66§éf ﬁéﬁ deductive instruments: This experience
enables the child to derive knowledge based on his actions on f
~objects rather than from their physical pébpéttiés; Piagét
(1970b) emphasizes that knowledge acquired through experience
has two pgiéSE "scquisition derived from the 6bi§cts and
constructive activities of the subject" (p.' 721). Piaget (1964)
cautions that while it is possible to obtain learning through
physicdl.cxperience by extérnal réinforcement, learning that
involves the construction of a logical structure cannot be

; .
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obtained by external reinforcement (p. 16). Piaget (1964)
points out tliat such léarning may be possible only if the
subject (learner) already possesses the necessary and
supportive simpler, more elementary iogical-mathematical
strictires required for the structure to be taught (p:16):

The Teacher's Role
Perhaps the greatest attraction of behaviorism is in the

instruction; The teacher's role is well defined in instruction
based on behavieoristic principles: However, the state of the

and specified sequence of instructional steps do not in

themselves guarantee success in learning by students.
We take the view that knowledge is not passed on to the

passive student by the teacher (Gattegno, 1970; Piaget, 1970a).

The student generates knowledge through his or her actions

(transformations) carried out on objects (Piaget, 1970a) or

through interaction with the teacher (Gattegno, 1970) (see

Figure 2). Thus the teacher should not consider herself as a

repository and a transmitter of knowledge (Vergnaud, 1983) to

teacher has then to determine "where the child is" from the

child's behavior as the latter performs the activites. The
teacher's understand¥ng of the child's knowledge will be
compared with the teacher's goals for the child and adjustments

14
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carefully intervenes, providing the guidance and support that

is necessary to enable the child to make progress. Also, the

teacher's intervention could be in the form of asking new
questions to enable the child to reflect, if possible, on her
experience of doing mathematics. |

To understand the child's actions and responses, the
teacher must formulate hypotheses about the chiid's’
capabilities and the possible progress she (child) can achieve.
This calls for testing the hypotheses which ultimately leads
to. the generation of further tasks and hypotheses . The
teacher, in €ssence, will takeé on theé role of an hypothesis
formulator and tester with the specific objective of using her
teacher's goal is to lead the chiia.iﬁ the acquisition of a
knowledge or of a method to solve a task. But the teacher must
allow the child to generate her own conceptions or methods,

The role of the teacher suggested above is consistent with

the constructivist approach to teaching (Cobb & Steffe, 1983;
von Glasersfeld, 1983). The principles of constructivism may
therefore have little meaning and application for the teacher

"directs-all her mathematics teaching; second, that children
should bé .talght in large groups with a minimum of child
initiated communication; third, that the child's own
constructed methods for solving arithmetical tasks are’

unimpor tant and should be ignored and;-fourth, that children
need to be drilled to acquire adilt methods and procedures. The

- iz - 15
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"constructivist teacher" is required to be creative and

situation places a gréaé deal of respousibility on the teacher
as well as presenting an enormou$ problem when the teacher
coties to grips with the slow pace of progress in some children.
Rut the teacher should be encouraged by the fact that her

success will not depend on how much of the adult concepts and

" methods the child is able to master. Rather, her goal should be

to bring out the most érbminent "mathematical” knowledge in the

child. This can only be achieved through the intelligent use of

the powers of the mind of all concerned, both the teacher and

communication between the teacher and the child the most

crucial aspect of teaching:

The Figurative and Operative .
" Piaget (1970a) distinguishes two apects of thinking that

essential aspect of thought is its operative and not its
figurative aspect (p. 15). BuUt to obtain & complete pictire of
children's mental development , we must consider the figurative

aspect in addition to the operative aspect (cf. Steffe, 1983).

To éiaget'(i§7ba); for a child to know an object or some

"reality",: that child must act on the object and transform it
in order to understand how a certain state is brought about

and operations (internalized actions) of the chiid that attempt
to transform reality (Piaget; 1970b; p. 716) . Thus Piaget

\ .
[}
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(1970b) points out that "operative" is a broader term than
“operational'; as the latter is only related to the operators
(p: 716): On the other hand, the EigutatiVé aspéCts are the
imitation (including graphic imitation or érawing§, and mental
imagery (cf. Bruner's (1966) enactive and iconic

representations);

\1_and

The type of knowledge that a child derives from an object
depends on the Sources of the child's abstractions. Piaget
(1970a) provides two sSources from which the child can abstract.
First, théré is the object itself, and second there are the
actions carried out on the object. Piaget (1970a) calls the
knowledge or abstraction derived from the object itself
"enipirical" knowledge or "simple" (emﬁiricaij abstraction. The
kno%iedge or abstraction drawn from the coordination of

actions; and not from the object, is called logical -
mathematical knowledge or "reflective" abstraction, using this

term in a double sense. For as Piaget (1970a) explains,

first psychoioglcai sense abstraction is. the
transposition from one hierarchical level to_another
level of action (for instance; from the level of
action to the level of operation). In a second )
psychological _sense reflection refers to the mental

process of reflection, that is, at the level of
thought a reorganization takes place {pp. 17-18).

The constriction of Units or uUnitary items (Steffe et al.,

1983; von Glasersfeld, 1981) by the child from things (sensory

- 17




material) consStituteés an instance of pseudo-empirical
abstraction (von Glasersfeld, 1981, p. 52). When the child
takes these units as material and unites them to construct a
nuniber (composite unity) then he or she has made a reflective
abstraction. Here the action is a mental act which is
reversible and therefore an-operation.

Steffe et al. (1983) have demonstrated, through minute
analyses of first-grade children's counting behavior in the
five different types of units.

S Counting is defined as "the production of a sequence o

number words, such that each number word is accompanied by the
production of a unit item" (Steffe et ai.; 1983, p: 24). Each

counting type is based on the type of unit item the child

"the thing we count was not there before we counted
it; but we create it as we go along, It is the acts
of creation that we count" {p. 105).
The unit items are the objects that are created by the child as
. she isolates and focuSes on certain sensory-motor signals, i.e.
visual, -auditory, and tactual perception , and also
proprioceptive sensation. The five counting types; in order of

‘ verbal; and abstract unit items: As “he creation of thése unit
items constitutes a developmental progression, the chiid who is
a counter of a particular unit item is capable of creating and

-15- 18




cotnting more primitive items. Thus a child is classified as a
counter of the most advanced unit items that she can create
while counting. Figure 3 (Steffe, et al., 1983, p. 117},
schematicallly represents the hierarchical classification of
counters and the typés of items that they are aware of and can

create during counting.

Counting Perceptual Unit JItems

Steffe et al. (1983) refer to counting that takes
perceptual items as units as counting perceptual unit items.
The child who reguires the perceptual component and is unable

to count unless a collection of perceptual items is actually

constituted into countabletunits, but also the child's motor
acts {pointing or nodding), and the vocal production of number
words. But the child has no awareness that the number words
designate the numerosity. of consecutively produced perceptual
unit items.’

The first step towards independerce from perceptual

signals in counting i$ when the child develops ability to
abstract figural representations of perceptual items (i.e.

visualized images). This becomes necessary when perceptual



items presented in a task are hidden from the child's view
under a screen. The child's [igural re-presentations of fhe
inaccessible perceptual items may be cdmplete or only partial
tepresentations. A child is called a counter of fiaural unit
items if the child is able to construct and count . xgural
representa:’ons of perceptual items which, though they are
presented in the context of a task, are not perceptuaily
available at the moment. The child's counting actibhs}até
necessarily restricted to the area of the screen concéaiihg the
perceptual items, bécaise the child is counting the hidden
Perceptual items. the child is unaware of the MOLGr AGES
(pointing or touching specific locations over the séreen) for
isolating the visualized images into discrete experisntial

items;

child differentiates its motor activity from other components

of a counting act (e.q., visual perception, utterance of a
number word). The child can therefore execute its motor actions
intentionally as well as in absence of perceptual items. The
motor act can now be taken by the child as a unitary event that-

as a beginning and an end. So the motor act beécomes a

e o

substitute for countable perceptuual items, and the child
attends to the motor act as a unit item. A child is said to be
a counter of motor unit items whenever the child's countable
items are 1imitea to pércéptuai; figural, and motor units
(Steffe; et al., 1982, p. B85): Such a child still requir&s the

actual performance of a motor act; accompanied by the utterance



of a number word, in order to create a countable item. The
counting activity has yet to be fully internalized by the
counter of motor unit iéems.

Counting Verbal Unit Items

- Th: vocal production of a number word is itself a motor
act: But it is a special kind of motor act, because the
proprioceptive sensations arising from the beginning and end of
the utterance of a number word are less apparent. The child
has; thétéfbfé;.ﬁéié difficulty in considering its utterances
as discrete items: When the child has developed greater

r of

for items of the previous types, she is called a coun

verbal unit items (Steffe, et al., 1983, p. 120).

Counting AbSt
Counters of verbal unit items are not capable of what is
géhéraiiy called "double counting." To do &0 requires the
awareness that the numerical structure designated by a number
word is a composite of individual units. Steffe et al. (1983)
call "a child a counter of abstract unit items' only when she
has acquired the capability of going from a number-word to the
conceptual structure which that word designates, i.e., to the
intenal construct that constitutes the particular numerosify"

' (pp: 120-121). For example; to solve "7 + 4", the counter o

the child can unite the counting acts, "one, two, three, ... ,
seven" into a numerical &tructuré (composite unity). This is an
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example of integration and Steffe et al: (1983) call it tacit
integration (p: 69) because the counting acts were implied in

The counter of abstract unit items itentionally kéeps
track of its counting acts becaluse they are instantiations of
the numerical structure to which "four" refers. Upon arrivig at
the number word "eleven", the child can take it to designate

the numérical structure that contains 11 individual ‘units. The
child who i§ a counter of abstract unit items does not need to
bé given any perceptual items in order to create the conceptual

Strictire thnat constitites countable items. But such a child

Counting Schemes

Counting is an activity that is repeatable .and can
therefore be considered as a ééb§m§.f8E; as Piaget (1980)
béiété out; "all action that is repeatable or generalized

a '‘scheme'" (p. 24). But a scheme is not simply activity. von

Glasersfeld (1980) .describes the complex nature of schemes as

follows:

Schemes as basic .sequences of events that consist of
parts: An initial part that serves as a trigger or
occasion: In schemes of action, this roughly
corresponds to what behviorists would call "stimulus",
i.e., a sensory-motor pattern. The second part, that
follows upon it is an.action ("response") or an
operation (conceptual or internalized activity) ...
The third part ... i§ what I call the result or Ssequel
"of the activity (p. 81).

The child's counting activity in the context of solving
o ¥ o o L S , L
addition-and subtraction is therefore a scheme. What triggers




the numeral or number word with a collection of items or a
figural pattern which then sparks off in che child an intention
to count.The second part of the counting scheme is a
constructiveé activity in which thé child createés and counts
countable items. As pointed out in the last section, the
countable items (fron tiie child's view) will be perceptual,
figural, motor, verbal, or abstract unit items. The counting
scheme for a child will therefore include the countable unitary
items that she is capable of creazting. The period (length of
time interval) during which a child creates her most advanced
unit item is referred to as the béﬁiéé of the counting scheme,
The .Eétiﬁf:iﬁé_j scheme periods are referred to as the perceptual,
figural, motor, 6éf5512 or abstract periods, respectively.

The Role of a Func Machine
The "function machine" is described in the literature
(MCKillip & Davis, 1980) as a device that accepts numbers in

; the form of input numerals and does something to these numbers,
'giving the result as output numerals. Even though it is
possible to construct a functioi machine that can actually

* ' produce output numerals (cf. the calculator or the

23
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microcomputer), the idea has been to use a simple box with
openings, say, marked "IN" and "OUT" as illustrated in

Figure 4.

The adult is aware that what the machine does to the
input numerals is an imagination of the mind but the child
would usually "plav tn= game" and believe that the machine
actually does something to the input numerals. The function

machine therefore provides an ideal devicé that can, be used by

the adult to simulate the operations of additicn and
problematic situations that translate into addition,
sibtraction, missing—addend, missing-subtrahend,

missing=minuend, comparison, and equalizing problems.

The working or operational steps of the function machine

the first part, the trigger of a scheme of action. Next, the
second step, giving a result as an output numeral, can be

' Gompared to Ehe third part, the result or sequel of a scheme,
The child,” presented with an operation performed by the

- 24



machine "does something to these numerals" and yields the
output numeral "8". We can then ask a child to infer the
operation (internalized or hidden action) she believes the

machine carried out. If the child is able to respond correctly
that the machine performed an "addition", then we can infer

demonstrated an operative (Piagetian sense) concept of
additions,

Another child might count her fingers ot objects and
compare the last number word "eight" uttered in the coufting
acts with the output numeral. This child may select "addition"
ot "plus" as the operation carried out by the machine but use
different expressions. For example, the child may say, "the
fidching makes 5 and 3 becotie 87. Further, if we replace the
input numeérals with cards showing pictures gf animals, say
birds on a card, then the latter child might not think in terms
of the action on numbers, but physically transform the ﬁiEEﬁféé

"from two catds onto a third card; the output. This should

indicafe that the child has not acquired addition as
internalized action: To the child addition has to be acted out
by manipulating objects or their mental re-presentatioh,
perhaps as a recognizable figural pattern. The child's concpet
would still be operative but the actions would be actually




carried out: At best this child can imagine and imitate actions

internalized activity.
Given that a child believes that the function machine

carries out an operation or performs some action on the input

shé Llhinks the machine does can be used to present probiems Eo
investigate her concept and representation of additions For
example; the child is shown two numerals on cards; say "7" and
"8" which are then given to har to put into the machine. The
child is then told that the machine "adds" or "puts together"

-

(or using her own words for describing addition) the two input
humerals, and she is to figure out thé output numeral. To
pre%eht a missing-addend problem, the child is not shown one of
the input numerals, and either the interviewer puts the numeral
into the machine or the child is asked to shut .her eyes before
given the numeral and guided to put it into the machine. The
child is then asked to take out the output numeral and figure
out the unknown (missing) input numeral. It is hypothesized
that what the child imagines the machine will do constitutes
‘her representation.

Thé child's scheme for adding will reflect her concept of

numerals into the machine may be different from the contexts in
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which the child wounld have previously learned to use her aaa'i'ng'
scheme (8); the child will have to assimilate the new situation
into her existing schemées; for adding. Once theé child has
adapted to this situation, subsequent tasks will provide a
context for her to modify her existing adding schemes in
investigate the child's concept and representation of

subtraction.

Modeling

Models are useful in the detailed analysis of children's
mathematical constructions and abstractions in the context of
solving arithmetical problems. We use "model” in the sense of
cybernetics rather than of replica of a physical object, say,
aeroplane. The goal is to hybéthééizéhééﬁééﬁEﬁgi EEEﬁéEéféé and
observation: A viable way to provide models of children's
addition and subtraction concepts is, therefore, to attempt to
reconstriuct the steps that led the children to whatever
conception of these arithmetical operations they might have
acquired. The reconstriiction is purely hypothetical and is
‘based on out (observers') inhterpretation of the children's
behavior in performing the tasks involving addition and
modeling Ehé;chiia?s conception of number and numerical
operatichs:

Such a reconstruction is necessarily hypothetical,




because another person's conceptions are, by
definition not observable., In this connection it is
crucial to remembeér that conceptual structures
(knowledge) are, 1n our v1ew, not transferable e

and could reflect upon and verbalize them, even if

it told the observer (teacher, experimenter) what

it believes to be, say, its concept of number, that

observer could not but interpret that verbal message

in terms of his or her own experience (p. xvi).
However, the models that are constructed from
interpretation of observations made on some children will

other experience (or experiment). The models may then be used
for predicting or explaining future experience (or child
behavior). Nevertheless, from the eaﬁetfaetiviStis Viewpbiht;

another. Secondly the viability of a model is not only due to
the nature of the model; but also to the characteristic way of
Cbhéeptualizihg the éxpériéhCés portrayéa by the model. Since

and subtraction concepts is counting. The use of counting by
.young children to solve addition and subtraction problems; from
simple ﬁgmericai combinations to verbal-story problems; have
been very %eil documented (Brownell, 1928; Carpenter & Moser;
1982; Carpenter, Hiebert, & Moser, 1981; Davydov & Andronov,
1981; Fuson, 1982; Gelman & Gallistel, 1978; Groen & Parkman,

1972; Groen & Resnick; 1977; Starkey & Gelman,; 1982; Steffe;




Spikes, & Hirstein, 1976; Steffe, Thompson, & Richards, 1982;

Steftfe, von Glasersfeld, Richards, & Cobb, 1983; Suppes &
Groen, 1967; Thaeler, 1981; Woods; Resnick, & Groen; 1975).
Nevertheless, the work of Steffe and his collaborators (1976 ;
1982; 1983) has provided an alternative and promising

theoretical Fframework to aceount for the constrictions and
development of children's addition and subtraction concepts.

" Other researchers (Carpenter et al:; 1981; Carpenter & Moser,
1982; Héﬁliﬁéﬁ & Ginsburg, 1981) who have modeled children's
addition and subtraction concepts have significant differences
in their theorectical framework: First, their analyses of
children's behavior are based not on constructivism but on
behavioristic or information processing paradigms (Greeno,
1976) . Second, mathematical knowledge is assumed to exist in
the environment independent of the child (human organism); and
it éan be passed on directly by the teacher to the child. Thus
carpenter (1983a) mentions the reduction of "mathematics to a
series of component skills that can be taught directly" (p.
104). Steffe et al. (1983) share Piaget's (1970a) views
concerning the growth of mathematical knowledge:

I thlnk that human knowledge IS essentlally active.

transformations. To know is to transform reality in

order to understand how a certain state is brought

about. By virtue of this point of view, I find
myself opposed to the:view of knowledge as a copy;
a passive copy, of reality (p. 15).

What a paftiéﬁiéf 6Biia assimilates as knowledge as a rééuit of
child's ﬁiéﬁiédé kﬁéwiéagé or ékpétiéhbé. The child's
.
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(adult), and may differ from that of another child. Third, all
children who can count to solve arithmetical tasks are
considered to be numerical (Starkey & Gelman, 1982). Thus the
children's actions are operative (Piagetian sense). But Steffe
(1983) has shown that the solution processes of some children,
though sophisticated in appéarance; are stilil figurative -and
identified the use of fingers and numbér word utterances in
counting processes, there iSs no attempt to discriminate between
the intentions of the children. As was explained in the last
two sections, one child may count fingers as perceptual items;
another as motor items, and a third as abstract items: Children
using these different conceptions of units have been shown
(Steffe et al., 1983) to differ significantly in their
Understanding of and Solution processes for addition and

subtraction problems.

o
The study was conducted as a teaching experiment: This
involved observing the children's Sehavior and probing their
mental processes during clinical interviews. There were also
teaching episodes during which the interviewer communicated
with the child in an attempt to encourage the child improve her
counting skills, number word sequences, use of spatial and
finger patterns, and to show flexibility in the use of her

1]
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Subjects

The subjects were eight first- and second-grade children
in an elementary school in the Clarke County School District in
égorgia, which serves both middle and working class
communities. The experiment was conducted towards the end of
Spring 1983 when the first-grade children had received

instruction in both addition and subtraction: The eicg™t

minutes interview with each child individually: The children
were selected to reflect the possible variations in counting;
adding, and subtracting schemes that was evident from the
interviews: There was an equal number of males and females as
well as an equal number of first- and second-graders.
Materials

Two types of devices conStruc;éé with boxes were used as

operations and to present all types of addition and subtraction

problems (see Tables 1 through 6). The first function machine

Insert Tables 1 through 6

about here

_has two input holes, marked "IN" and an output hole; marked

"OUT" (see Figure 4(a) ). The second function machine has only
onie input hole and an‘output hole (see Figure 4(b) ) :




procedure

' The experiment was performed during normal school time
lasted fFrom 20 to 30 minutes. The intérviewer worked with each
child for 4 to 6 sessions and the video tape for each child was
analyzed befors the next Session. This enabled the interviewer
to formulate hypotheses about the child's counting, adding and
subtracting Schemes and plan appropriate activities and
problems for presentationh at the next session.

The addition and subtraction problems were orally
presented to each child using the fqhétion machines. Tables 1
thréugh 6 show the different problems used but the number and
types of problems presented to each child depended on his or
her performance,

First, the function machine was introduced to each child
as a device that accepts input numerals (numerals or pictures
on cards and objects in bags): The child was then told the
machine will do something to the input numerals and give the

‘Fesult as ah output numeral: After this, the child was shown
take out the output numeral. The child's task was to determine
winat she thought the machine did tc the input numerals’ that

resulted in the output numeral obtained.
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Second, the child's expression for describing the
operation was used to pruvent problems involving that

sessions, depending on the performance of the child, before the
subfraction operation was introduced: More addition and
subtraction problems;, as well as comparison and equalizing
problems were presented in later sessions.

Parts of some sessions were uséd as teaching episodes.
The final session for each child was used to conduct an

interview to determine the child's counting type.

The children's knowledge of addition as an operation were
revealed iii their responses for describing or characterizing an
addition ir-gined to go on inside the "function machine" (see
Figure ©(a)). Table 7 shows the various characterizations of

" addition by the children. Only three of the eight children used

Insert Table 7 about here

the asaai'wéiég; "add" or "adding" to describe the operation.
TWo other children described the operation as "put ... together
to make i:." {i.e. put 5 and 3 together to make 8). These five
children seemed to have abstracted the input numbers five and

three From the pictiures of bi-ds on cards inserted into the




machine. They performed a mental addition (interiocrized action)
and compared their results with the output numeral "8", which

alse abstracted from the pictures of birds on a card drawn

[N

wa
from the machine. We hypothesize that these five children had
an operative concept of addition: The children succeeded to
transform what appeared to be a transfer of pictures on two
cards onto a single card into a situation that involved mental
addition of numbers. They did iot sifply attempt to imitate the
action they believed the machine carried out. .

On the other hand, the remaining three children did not

.on the pictures of birds as input and output, and attempted to
describe the possible action they believed the machine to have
carried olut. Their descriptions of the operation were “take

way ... put them on here" and "makes more numbers". Thus they

si]

attempted to imitate or present a mental imagery of what might

have taken place inside the machine. They did not attempt to

Representations of Adding Schemes
Four representations of children's adding schemes that

.

representations; Al; A2, A3, and A4 (see Figures 6 through 9)
were observed in the context of children solving simplé

‘addition; and missing addend (first or second) problems (see,

Tables 1 and 2). A basic scheme for -solving an addition problem




underlies ‘each of the four representations: Also one or more

specific schemes have been identified with each representation.

Tnsert Figires 6 through 9 about here

Representatien AL

The basic scheme underlying this representation is
referred to as Counting All. In this representation (see Figure
6) the child counts a collection of items starting from one
‘till she utters the number word for one addend. The chiid then
counts a second collection of items starting from one’again
till she utters the number wéraiféf the second addend. Next;
the child might bring all the items in the two collections

after the arrow in Figure 6(a); and then counts the items
starting from one: Alternatively; the child may leave the two

" collections where she initially established them, and count all
the items starting from one by making an enactive bridge from

one collection to the other as shown in the diagram after the
arrow in Figure 6(b). The child takes the last number word she
utters as the answer. Since the items used to establish the two
cbllectibﬁ; will be recounted they must necessarily be
perceptual in order to leave permanent records for the

recounting. The following are the two specific schemes that

&




1. Counting A1l In Joined Collectiops. 1In this scheme (see
rigure 6(a)) the child physically combines the items in the two
collections to form a Siﬁgié collection, and then proceeds to
count all the items, starting from one. For example, asked to
Solve "2 + 5", and directed to use blocks, Hendry counted two
the two blocks and added them to the five others and then

counted all the blocks uttering "1,2,3 ... 7" in synchrony with

touching the blocks.

In this scheme (see

collection to the other. For example, Monica solved "6 + 8" by
first counting 6 blocks, placed them in a row; and then counted
8 more blocks in another row below the 6 blocks: She then
recounted all the blocks without; first; combining them into a
single row.
' Representation A2

The basic scheme underlying this representation is
referred to as Counting From 1: In this representation (see
Figure 7) the child starts to utter number words from one, and
continues till she utters the number word for one of the

acts up to this point: But the child then makes a separation in
‘her counting activity; and continues to utter number words
forwward while keeping track of the counting acts by extending

fingers or:touching objects. The child stops uttering number
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words when the number (from the child's point of view) of items

child utters the number word for the sum (if solving a
missing-addend problem): The child takes the last number word
uttered as the answer, or the number of recorded items as the

1. €ounting Perceptual Unit Items

&cheme correctly;-the child should seyuentially touch objects
or hér fingers in Synchrony with uttering number words from
one.. The child would stop couriting appropriately if she made a

separation after uttering the number word for the first

rti

(selected) addend and recognized a spatial pattern tha

of perceptual unit iteins, sequentially touched all his fingers

.+ 10", in

" till he ran out in synchrony with uttering "1,2,3
an attempt to solve "3 + 4%; Similarly, Monica (Byr: 5mo:); a
counter of motor unit items, realized she needed more than her
10 fingers to solve "7 + 8", But when the interviewer suggested
she could use some of his fingers, Monica simply counted all
the 20 Fingers, her 10 Eingers as well as those of the
interviewer's. Monica nodded in agreement when the interviewer
asked if she was sure of the answer:

2. Counting Motof Unit Items From 1. In this scheme the 'child
counts her motor acts beginning to utter number words from 1

till she utters the number word for the first (selected)



addend. The child then continues to utter the succeeding number
words in synchrony with producing motor acts equal to the
sccond addend. The difficulty wikh this scheme is the need to
keep track of the counting acts for the second addernd. Children
use finger patteris to enable them to overcome this difficulty.
It is important for the child.to make a visual or physical .
separation between items representing the two addends. For
example, Paris (8yr. 4mo,),; a counter of abstract unit items,
failed to make a separation when solving "7 + 8". He extended
18 fiﬁééfé while uttering "1,;2,3 ... 7-6,%$,10 ... 18". Even

his 10 fingers: This accounted for why Paris stopped counting
after uttering "18" and sceing a pattern of his 8 extended

Fingers: Paris had no difficulty in using this scheme to solve
"4 ¥ 10", There was a natural separation after counting his 10

extended fingers so he easily exténded four more and stopped.

it Items Prom l. 1In.this scheme the child

utters the number word sequence from 1 till she utters the
number word for the first (selected) addend. The child then
pauses momentarily before continuing to utter succeeding number

words. The child may rely on the rythmic pattern in the

addend in order to know when to stop. Shani (7yr. 1lmo.), a
counter of verbal unit items; recalled "11" after few seconds

'in answer to "3 + 8". Asked to pretend to explain how she

solved the problem to her friend, Shani replied,




"I would say, 1,2,3 ... 8. Because that is the hard

onc. 9;10,11" temphasizing "11").

Shani deliberately decided first to utter the number words from
one through eight, because she foresaw it was going to be
difficult for her to keep track if she began with the number
words from one to three. The raising of her voice to emphasize
"11" and the fact that she stopped uttering number words
indicate her awareness of having counted three more. Shani

confirmed her inability to keep track o

longer number word
utterances by refusing to attempt "7 + §". She complained, "I
Representation A3,

' The basic scheme underlying this representation is
referred to as Counting On: In this representation (séé Figure
8) the child utters the number word for one given addend, and
then continues to utter the succeeding Forward number words.The
child kecps track of her number word utterances mentally or by
extending fingers or by using objects as records. To solve an

. addition problem, the child stops uttering number words when
the number of items used as records is the same as the other
given addend. The child then takes the last number word uttered
as the answer. To solve a missing-addend problem, the child
stops uttering number words when she utters the number word for

the given sum: The child then takes the number of items
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1. Countina On-Using Perceptual Unit Items: When the child

intentionally counts on; using perceptual items; especially
objects other than her fingers; then we say the child is
employing the Counting On-Using Perceptual Unit Items scheme.
For. cxample; to solve "30 + 13 ; Vaterie (7yr. 3mo.}, a counter
of abstract unit items, spontaneously asked for blocks to
count. After establishing two;Sépératé collections of 30 and 13
blorks;, vValerie touched the collection of 30 blocks once and
Séia; "3p", She then continued to count the other 13 Siocks'by
uttering "31,32,33 ... 43" in synchrony with touching the
blocks. When she was done; she said, " that's 43", Valerie's
.action indicated that she intended to count on from 30. This
observation is supported by the fact that she had counted on,

using motor Unit items in the preceding task , "7 + 8", But she

numeri.cal structure, 30. After counting 30 blocks she knew
there were 30 individual blocks so .she made an integration of
" hypothesize that Valerie could not, however; make a tacit
integration of 30 counting acts as she succeeded to make for
eight counting acts to Séi%é "7 + 8",

2. Counting On-Using Motor Unit Items: When a child relies on
her motor acts to count on; we say that the child is using the
Counting 6a—uéiﬁ§ Motor Unit Items scheme, Cullen (6yr. 9mo.),
3 counter of abstract unit items, solved the missing addend
‘task; "34 + ___ = 44" by sequentially extending her fingers in
synchrony with uttering, "35,36,37 ... 44". She then said, "10°

while looking at her open two hands. Cullen's intention was to



count her .motor acts of putting up fingers. When she was done
she did not khnow how many number words she had uttered; until
she saw her 10 fingers éii extended. We infer that Cullen
counted on using motor unit items rather than verbal unit
items. This does not exclude the fact that she could have
constructed abstract units from her motor acts:

3. countind On-Using Verbal Unit Items. 1In order to count on

using verbal unit items without veing finger movements to keep
track of how many number werds have been uttered, the child
Smo.); a counter of abstract unit items; used a temporal
.pattern of two number words followed by a string of five number
words to solve "7 + 8", He uttered "8-9,10-11,12, 13,14,15".

seven, their number word utterances wére accompanied by finger
movements. In some casés the children used their fingers

' subtly, say, by pressing them on their thighss:

4. Counting g _spstract Unit Items. The counter of

abstract unit items i capable of taking any sensory-motor unit

as an abstract unit (Steffe et al:; 1983, p. 67). When such a

child clearly shows that shke counted on to solve an addition

then she is classified as Counting On-Using Abstract Unit
ltems. For example; Jef: used abstract units to count dhrfrbm 8
to solve , "B + ___ = 11". He sat silently for about 10

seconds before saying the acswer was "3". The following portion

il
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of his brotocol (I: interviewer, J: JEff) shows how he solved

the problem:

Can you tell me how you found out? o
I had 8 and you had 3, and together makes 11.
HBow did you know I had 3°?

I counted them. , )

What did you say when you counted?

8"9',10',11.

o G - G

Jeff had sarlier in the same interview recalled immediately
that "8 ¥ 3" is "11". If he had related this addition .fact to
the missing-addend problem then he would have used it to solve
the task. But when Jeff was asked how he got 737, he repiied,
‘constricted three abstract units from the internalizéd counting
acts, "9,10,11",

5. Adding On By Tens And Ones. This scheme involves adding;
first tens to one addend followed by adding ones. This scheme
was used to solve a missing-addend problem by John: He gave

"34" as the answer to "10 + = 44" and explained as follows:
"I alided 3 tens to 10. That will be 405 And I

added 4 to the 3 which gives you 34 And you
need 10 to make 44";

"40"; John went on to complete his goal of finding the missing
addend. He.added 4 to 30 to obtain 34. John's use of "3" rather
than "3 tens" or "30" reflects his strong reliance on place
.valie ideas .(5ée the Recalling Sums Using Place Value scheme

below) .



Representation A4
The basic scheme underlying this representation of

representation (see Figure 9) the child searches for and finds
an addition fact from memory that involves both or one addend

and modifies it: As soon as two numbers in the recalled additon
fact fit the given numbers in the problem, the third number is
taken as the answer: The following are the four specific

1. Recallind Sums By Guessing. This scheme involves the child
the problem was presented. With regard to. the representation
shown in Figure 9 the chil@'s action follows only the arrows 1
and 4 without following artows 2 and 3. That is, the child

The child who is not "guessing" but has meaningfully habituated
(Brownell, 1928) the addition fact should be able to explain

. her answer by using one of the already discussed schemes.

2. Recalling Sums Using Doubles: This scheme involves the
child recalling an addition fact that is the double of one of
"partial sum" by a number that is the difference between the
given addends to obtain-the required sum. To solve a missing

~addend probiem; the child increases or decreases the doubled

addend by the difference between the given sum and the partial



2mo:); a counter of.abstract unit items,.solved "15 + -
REL iéﬁtéii§ and explained his solution as "Fifteen plus 15 is
30, and you need one more to make 31", John constructed the
missing addend from 15 and one. He obtained 15 as part of the
missing addend ( the invterviewer's input humeral which John
did not see) by recalling the doubles fact "15 + 15 = 30". He
then realized the partial sum, 30 had to be increased by 1 to
obtain the given sum, 31. So he aiso increased 15 by 1 to
obtain 16 as the missing addend.

3. Recalling Sums To A Decade. 1In this scheme the child

.recalls an addition fact that involves adding a number to the
increases the decade by the difference between the other addend
and the number added to the larger addend: The answer is the
final sum obtained. To Solve & Missing-addend ﬁiébiém, the
child increases or decreases the given addend to obtain the
hext or the preceding decade respectively. The child then adds
‘the increment to or subtracts the decrement from the difference
between the given sum and the decade to obtain the missing

i

addend. For example, to sovie "i5 + 31", John sat -for
some time and said, "You put iu 16". His explained his answer
as follows:

"You already have 15 and you add 5 makes 20; _and

10 more;makes 30. That's 15 and 1 more is 16",
We infer that John intended to add numbers to 15 till he got
the decade nearest 31, that is; 30. He therefore added Five Eg

15 to get the decade; 20 and then added 10 more to get the



realized that he had used 15. He neaded one more to make 31 so he

added it to 15 to get 16, since his goal was to find -how many he

should add to 15 to get 31,

This scheme involves the

child recalling the sum for the numbers in the tens and ones
places separately and coordinating the two sums to form the
appropriate number. If the sum of the numbers in the omes place is
greater or equal to ten; the sum obtained for the numbers in the
tens place is increased by one (or one ten). For example, John
explained his answer to "13 + 15" as, "the 3 and 5 gives you 8,
and 1 plus 1 is 2. So it must be "28". We infer that John was
aware that he was adding tens when he said; "1 plus 1 is 2": So he
‘ﬁéﬁEéll§ conver ted Eﬁé two tens into 20 éﬁa coordinated the eight

ones with it to obtain 28.

Subtraction Concepts

Subtraction imagined to go on inside the function machine (see
Figure 5(b)). Table 8 shows the observed children's

‘characterizations of subtraction, Hendry and Shani described the

' Insert Table 8 about here

operation as "make less" and "changed it from six to four
respectively., Monica's description was; "it took two away"

_ ‘
.
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output card). These three children's descriptions suggésted that
they attempted to describe the physical action that they imagiﬁéa
the machine to perform on the inputs (pictures of animals on
cards). There was no effort to transform the situation into a
numerical operation that could be carried out mentally. However,
“Hendry and Shani later seieétéd "take away" from the suggestion,
"did the machine add, subtract; or take away"? We infer that these

three children had a figurative concept of subtraction,

. Cullen, Jeff; Paris; and Valerie described the §déEEéEEi65
they imagined to go on in the machine as "Eéké away". John was
the only child to use the "mathematical®" term "subtract" to
describe the 6§éEéEiéﬁ: These five children's description
involved the mental action of taking away or subtracting two from
sik. Their respoiises indicated that they transforied the
the numbers mentally. We infer that the five children had an

concept of subtraction.

R EBEBEEHLALLGHE GE Sibtiicting Sehsias
Six representations ¢’ children's sSubtracting Schemes that

reflect their subtraction concepts have been identified. The

representations; Sl1, S2, S3, S4, S5, and S6 (see Figures 10

through 15) were observed in the context of children solving

'  Insert Fiqures 10 through 1




direct subtraction, missing-subtrahend, missing-minuend,

ébmparisch:méfé; comparison-less, equalizing-add, and
equalizing-take away problems (see Tables 3 through 6). A basic
scheme for solving a subtraction problem underlies each of the six
representations. BGt one or more specific schemes have been
indentified with each representation which reflect the integration

of counting unit items in the children's schemes for subtracting;

The basic scheme underlying this representation of

subtraction is referred to as Separating. 1In this representation

(see Figure 10) theé child counts perceptual items to construct a

collectlon equal to the larger given number in a problem: The

numbér to establish a new collection: Finally, the child counts

the remalnlng items of the first collection and takes the last

number word she utters as the answer: Only perCépEUéi itéﬁé ﬁﬁiéﬁ

act1v1t1es, could be used with this scheme: The specific scheme

for this representation is, thereéfore, referred to as ééﬁéfﬁtiﬁgz

The following 1llustrat°s how Shahi, a counter of verbal unjit.

1tems; used this schenie to solve "9 - gn,

; 'Shanl seguentzally took 9 blocks from a box. and
placed them in her hand, while uttering "1,2,3 ies
She arranged the bl.icks in a row, and sequentzally

separated 5 blocks in synchrony with uttering

9",




"1,2:3,4,5". Next she counted the remalnlng 4

blocks by subvocalizing number words and said, wgn
{with eniphasis).

Shani transformed the' task into "how many blocks will be left

from nine if she took away five"? This is indicated by her
subvocallzlng the counting acts for the blocks left. She was only

interested in the tast number word so she emphasized it to signify

that she was done.

The basxc scheme underlylng this repre ernitation of

éﬁbEiaéEiéh is referred to as Adding All. In this representation
{ééé Figure 11) the child counts pérCéptualfAtems to construct two
collections equai to the given numbers in the problem. The child
then recounts all the items: in the twovééiiééfiéﬁé by ﬁakiﬁg an
énactive bridge from one collection to the other or by first,
joining the collections to form a new sihgle collection:; The
specific scheme identified with this fepresentation is referred to
-és Adéding All. This wag similar to the Counting All In Separated

_ébiiéCEiOhs identified as an adding scheme; but the ahalcgué of

in the study. The following is part of a protocol which s:. - how

‘Monica used this-scheme~to solve " = 2 = 4", presented with

blocks in sandwich bags:

I: §6 how many did I put in? (The interviewer had put
in.the minuend without showing it to Monica).

M: 3 (Guesses). o o

I: How are you going to find out?

M: Count on my fingers

1: Count on my flngers.



i: Can you do so’
M: (Slmultaneously extends two fingers on her right hand:
and four fingers on her left hand). 1; 2; 3 . . . 6,
in synchrony with folding down her extended fingers.
After guessing "3", Monica reorganized her thinking; and perhaps
recalled how the interviewer had previously guided her to solve a
_similar task " - 3 = 5", She established the two collections
for "2" and "4" simultaneously and then counted all extended

fingers. Monica did not juxtapose the extended fingers on both
hands before counting:

subtraction is referred to as Trial Apnd Error. 1In this
representation (see Figure 12) the éhiia constructs a Céiiéétibﬁ

the remaining items: If the last number word uttered is not équai
- to the cnaller given number; the child increases or decreases the

gUéSSéa number and répééts the ééparating action. The child

after separating Some items, equal the smaller number. fﬁe child
takes the last number word uttered in the final counting activity

the answer. The specific scheme for this representation is

6]

5
referred to as the Trial And Error Separating. The following
illustrates how Cullen used this scheme to. solve "13 - ___ = 9"

She then separated 6 blocks; countnd the remainxng

blocks,; -and found there were 7. left rather than 9.

She recombined the blocks; separated 5 blocks; and

counted the remaining 9 blocks. She answered, "5".



When Cullen found that there were seven blocks left, she realized

that the separated blocks were two more than she wanted. So she
decreased seven by two and éeparated five blocks. Had Cullen
known that five was the answer, she would have uttered it
immediately. But her scheme required that she checked to see that

to as Counting Up. This scheme is similar to the Counting On
scheme for addition. 1In the representation (see Figure 13) for
this scheme; the child utters the number word for the smaller or

number words, fThe child keeps track of her number word utterances

mentally or by using fingers or objects as records. The child
might count up to the other given number, and take the number of
counting acts recorded as the answer. The child might also count
Up as many times as. the second given number, and take the last
number word as the answer. The four specific schemes identified
with this representation were as follows:

1. Counting Up-Using Abstract Unit Items.

2. Counting Up-Using Verbal Unit Items.

3. Counting Up~-Using Motor Unit Items.

4. Counting Up-Using Perceptual Unit Items.

7-8; 9; 10 ._. : 14"; in synchrony with extending

7 fingers. "Fourteen".




fingers. She also knew that the last number word will be the

answer; so she repeated it as soon as she was done:

_The basic scheme underlying this representation is referred

E0 as Counting Down. In this representation (see Figure 14), the
child might begin by uttering number words backward from thé
larger given number and proceeds counting to thé smallér given
nunber, keeping records of the number of counting acts. The child
takes the number of counting acts recorded as the answer, and the

i Down To. The child might also

scheme is referred to as
begin by uttering number words backward and stop after recording
as many counting acts as the smallér given number. The last number

word is taken by the child as the answer, and the scheme is

yown With. The six specific schemes

referred to as

identified were as follows:
1. Counting Down To-Using /~rbal Unit Items.
2. Counting Down To-Using Motor Unit Items.
3. Counting Down To-Using Perceptual Unit Items.

4. Counting Down With-Using Verbal Unit Items.

5. Counting Down With-Using Motor Unit Itemss
6. Counting Down With-Using Perceptual Unit Items.
To solve "13 - = 9", Jeff uttered "13-12,11-10-9", and

answered, "3 - 4", without any finger movementS. We infer that
Our hypothesis is supported by theé fact tiat Jeff paused after 11,
and after 10. These pauses enabled him to keep track of his number

word utterances.




The following illustrates how Paris used the Counting Down
With-Using Perceptual Unit Items to solve "18 - 7".

Paris uttered "18-17;16-15-13", in synchrony with
folding a1l his left fingers. He stopped, counted
the folded fingers, and continued "12-10", and
folded two more fingers. Paris then answered, "10":

perceptual items. He did not maintain a mental count of his
folded fingers so he interrupted the counting activity to £ind
out. The pauses in his counting acts was the effect of his poor

backward number word sequence. Our hypothesis is suppor ted by

paris' ommission of "14" and "11". Also, Paris did not count the

to as Recalling Number Facts: 1In this.representation (see Figure
15) the child recalls number facts from memory until she recalls
an addition or a subtraction fact that involves two of the given
‘numbers in the problem. The child then takes the third number as
the answer. Tﬁékfoiiowing are the five specific schemes of the
representation.
1. Recalling Result By Guessind: This scheme is similar to the
Recalling Sum éy Guessing scheme for adding. But in this case;
the recalled number fact can be an addition or a subtraction. The

child who use's this scheme; with understanding; should be able to
explain how his answer could be obtained by using one of the other

subtracting schemes or an adding scheme: For example, Paris

solved "9 ~ 6" by saying; "3" immedately after the problem was




presented. He explained his answer by extending nine fingers,

folided down six fingers; held the three remaining fingers, and

said; "three will be left",

In this schemie the child recalls zan

This scheme follows the path given by the
arrows 1 and 6 in Figuré 15. For example, to solve "how many more
is 5 than 3", valerie said, "2, because 2 and 3 is 5". We infer
that vValerie recalled the addition fact "2 + 3 = 5", and related
it to the given numbers in thé problem. She then realized that 3
and'5 were t4e given numbers, so she gave "2" as the answer.

This scheme is similar to the

Recalling Addition Fact schéme; but in this case; the child
recalls and relates a subtraction fact to the given problem. For
example, Jeff recalled the subtraction fact, "5 - 2 = 3" and

- related it to the problem " - 2 = 3", His answer "5" was the

number that was not given in the problems

4. Recalling Number Facts By Trial and Error. In this scheme the
chitd recalls successively, at least two Addition or Subtraction
Facts that comes to his mind until the recalled number fact

involves the two given numbers. The child then relates the number

" fact to the problem and takes the third number as the answer. The
first recalled number fact to make it involve the two given
numbers. For example, to solve "24 - 12", John recalled the

addition fact ™4 + 12 = 26". He realized it did not relate to

it

the problem, that is the sum was not 24. So he recalled "12 + 12
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= 24", which related to the problem, and took "12" as the answer.
John's explanation for making a second recall was that, "I used 14
and 12, and got 26, but that didn't work, so I tried 12 plus 12
and that worked". wWe infer that John was not aware that if he
"12 4+ 12 = 24", A&Also, John did not realize that decreasing either

14 or 26 by two will give the Correct result: John's explamation
"that will work". ' ;

5. g Derived Facts. 1In this scheme the child recalls an

givén numbers. The child then modifies (increa&es or decreases) -
the numbers until he obtains a number fact that involves the two
given numbers: The child takes the third number, not given, as

the answer. For example to solve "l14 - _.__ = 7", John said, "7

and 6 is 13 and 1 more is 14", and answered, "7%. gJohn's first
- tecalled addition fact, "7 + 6 = 13" involved only one given
nufiber. So he kneéw he was not done. John, therefore, increased
the sum by 1 and mentally increased 6 also by 1. This led him to
recall the number fact, "7 + 7 = 14", so John took "7" as the

answer,




Addjing Schemes
Piaget (19704) identified four fundamental
characteristics of an operation:

First .,. an operation is an_action that can be
internalized; that is, it can be carried out in
thought as well as executed materially. Second,.
it is a reversible action .., Third ... it always
supposes some conservation, some invariant ...
fourthh ... (arn) operation is related to a system o
operations, or to a total structure (pp. 21-22).

Sinply put, an operation is an internalized and reversible

by rules. Addition satisfies these four characteristics with
siibtraction as its reversal and with the system of the whole

have een identified and which involve counting, that is;
Counting All, Counting From 1, and Counting On reflect the
material ecxecution rather than the internalized action of
addition. In other words, even though these schemes are based
on mental re-presentations of abstractions from previous

internalized: The activities of uttering number words and
Creating unit items (perceptual, motor, verbal) form an
integral part of the child's means for executing the action of.

completély internalized actions.
Steffe et al. (1983) characterized children's counting

snsions. These extensions were

schemes for adding as ext




identified mainly in the context of children solving tasks
involving partially or totally hidden collections. The adding
schemes that have been identified in Ehis study with children
solving tasks presented mainly in the context of the function
machine are consistent with the extensions identified by Steffe
et al. (1983). This supports the view that the addding schemes

.

and especially the counting unit types f{counting perceptual,
motor, verbal, or abstract unit itéms) are normal constructions
by children as they acguire numerical concepts. fhat'is; the
colinting types are not constrained to the singular context of
having children count partially and totally hidden collections.
.Thése same Schemés can be observed in totally different

contexts,

scheme Hendry (6yr. 9mc.) and Monica (8yr. mo.) , counters of

-+ , : , s : : . , .
perceptual and motor unit items respectively, used correctly to

' solve addition problems. Paris (8yr. 4mo.); a counter o
abstract unit items used this scheme, but it was prompted by a
several attempts to count on to solve “"30 + 13“*{@;65a51y due
to his faulty number word sequence beyond "30%). valerie (7yr.
3mo.}; a counter of abstract unit items also used some parts of
this scheme. but because she counted on from 30 after -
‘establishing twWo coliections for "30" and "13", her scheme was

ciassified as Counting On-Using Perceptual Unit Items.




The .Counting All schefie requires three counting sequences
(see Figure 6). But even the Counting All In Separated
Collections scheme cannot be considered as an example of Steffe
et al.'s (1983) simple extension. Because the child's intention

the two coliections can be ignored:. The activity part of this
S.'c'héhié is included in Houlihan and Ginsburg' s (i9§i) ééﬁﬁEii’ié
From 1 using concrete aids. Carpenter(1983b) and Hiebert et
al; {1982) aitso cilassified their Counting All strategy as thé
Counting From . This scheme was identified as an advance over
thé Counting All &chéme for two reasons. First, the Counting
From 1 scheme included the ability to count verbal unit items
which .the children who were limited to the use of the Counting
All scheme lacked. Second, the children who uSed theé Counting

From 1 scheme solved a wider range of problems than those who

Shani (7yr. lmo.), a counter of verbal unit items, used
the Counting From 1 scheme to solve nearly all her addition
tasks; including missing-addend tasks. Paris was the only
counter of abstract unit items who used this scheme. Monica, a
counter of moéét unit items, used the Counting Perceptual Unit




hands. She then recounted the fingers as perceptual items.
Monica's scheme was identified as Counting All, because Monica
could not count her motor acts to establish a single collection
that included both addends. Hendry also failed to use the
Coluiiting Percéptual Items From 1 schemé correctly, because,
like Monica; he also failed to make separations in the counting
activity.

omé reseachérs do not distinguish between thePcounting

m

activity ("response") in the Counting From 1 and the Counting
All schemes. Carpenter (1983b) and Hiebert et al. (1982)
identified only Counting. All, and Houlihan and Ginsburg {1981)
identified only Counting From 1 USing or not Using concrete
aids. The latter included "counting in which the child claims
to have just counted numbers™ (p. 99). We also observed this
situation but we did not identify this as Counting Abstract
Unit Items From 1 scheme (see Table 9). First, counting
abstract unit- items was only attributed to children classified
as counters of abstract vnit items and therefore able to
consturct a numerical éEfﬁEtﬁEé (cf. Steffe et al., 1983, p.
68) . Second, counters Sf abstract unit items when counting
.mentally are likely to count on than count from 1. €6UﬁEéf§ of

verbal and motor unit items did perf-rm mental addifion but
their explanations indicated that thsy re-presented to
themselves spatial or figural patterns or imagined counting
acts which they then mentally monitored and counted (cf. the

claim is consistent with Houlihan and Ginsburg's (1981) report
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that "the child claims to use some kind of mental picture such
counting of the re-presentations of counting activity using
these unit items. However, we hypothesize that when a counter
of abstract uUnit items re-present a sensory-motor item to

herself, the child constitiites, the item as an abstract unit.

and the

Counting Perceptual Unit Items From 1 Schemeé is called simple

extensions

Counting On. This scheme was identified as the second highest
level of the observed children's representation of addition.
Cullen (6yr. 9mo.) and Jeff (8yr. Smo.) as well as Paris and

Valerie, all counters of abstract unit items used mainly the

the five Counting On schemes (see Table 9). Paris gave no
indication that he could count on, using abstract unit items
(thar is, count on mentally and respond correctly to the
problem) ; He always had to verbalize his thoughts after sitting
gquietly for a long time before he produced correct responses,

The only occasion Shani could be classified as using the
Counting On scheme was when she soived "5 + ___ = 7". But the
evidence i's suspect because Shani initiall guessed "13", "9",
"ii" and "10" as answers in that order and then said, "2 more".
Her ékpiaﬁatiéﬁ w .S; iny mind said 6 and 7 So I said 2 more®.
Shani's actions indicateéd that she first attempted to add
mentally 5 more to 7. Her incorrect responses ipaiéatea her

; :
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inability to count on correctly beyond 7 by 5 more. The most

plausible interpretation is that Shani did noc count on but
re-presented the counting acts, "1,2,3 ... 7" to herself but
only vocalized the part of the counting acts,; "§,7" to show how
she figured out the answer. This interpretation is consistent
with the Counting From 1 ééﬁéﬁé she used fEééﬁéﬁEiyg Monica and
Hendry also gave no indication that they could use the Counting
On scheme.:

Houlihan Sﬁa Ginsburg (1981) identified two strategies of
the Counting On. They included the use of fingers in the
Counting On-Using Concrete Aid strategy: We distinguish between

the use of fingers as perceptual and motor items, and

identified these two uses with separate schemes:Carpenter

(1983b) and Hiebert et al. (1982) identified two strategies,
Counting On From First (smaller) Number and Counting On From

Larger Number, which focus on the addends in the problems

rather than the qualitative differences in the items used for

and the children usually counted on from the larger addend. One
With 45", when solving "16 + 45". This indicated some children.
_might count on consistently from the first (smaller) addend

béCéUéélﬁﬁéy are not sure it is permissible to reverse the

order of the addends. Cullen's question indicated that she was
aware that the results would be the same when she reversed the
addends,; but she did not know that she would be allowed to do

S0O.



Steffe et al. (1983) restricted the schere,
extensjon , to the counting on scheme when the child constructs
a numerical structure during the process of counting. All the

v

children in the study who counted on also used the scheme to

solve missing-addend problems that involved an addend at least
greater than 10 (see Table 10) thus these children could
construct numerical extension schemes.

Recalling Sums . This scheme was identified as the highest
level of representation of addition by the children in the
(1983b) : Steffe et al: (1983) did not elaborate on children's
use of this scheme but only counters 61‘: ébStréCt Uhit items
Christopher used what we call Recalling Suiig Using Doubles and
Recalling Sums To A Decade to solve "7 + 5" and "6 + = 10",
(pp. 106-107). Table 9 shows that one child, John (8yr. 2mo.),
a counter of abstract unit items, answered nearly all problems

presented to him by Recalling Sums. His answers clearly

His only use of the Counting On scheme was when he added on by,

.tens and ones to solve "10 + = 44", But he showed he could
ourit on in a problem situation when he:.solved how many were in
a known hidden collection and an unspecified number of visible

(1983), and it was used in the determination of his counting
unit type.
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Recalling sifs Using doubleés of to & decade is
contingent upon a child's ability to recall immediately the
addition fact involving tﬁé doubles or the decade number. For
example, John's use of the doubles fact to solve "15 + ___ =
31, depended on his immediate recall of "15 + 15 = 30",

Cullen, Jeff, and Valerie alsoe used the Recallirig Sums scheme.

But they all used only the Recalling Sums By Guessing scheme.
That is, most of their recalls were made within two seconds
after being éresented with a problem. In addition none of their
explanations for recalled responses included the use of the
‘doubles fact nor the addition fact to a decade. They usually
explained mental additions by counting 66;'F§E example; Cullen
immediately recalled "2" as the answer to "5 + = 17"; but
explaining her solution; she said, "I counted in my hiha,
5-6,7". It was possible Cullen knew that "5 ¥ 2" is "7" but her

On, for solving addition.

Paris and Shani alsSo used only the ﬁééaiilng Sums By
Guessing schems but they gave incorrect responses. However,
Paris and Shani gave some correct recalls which were clearly
(from later explanations) the results of mental adding of
incorrect gue&ses when they used the Recalling Sums scheme.

We infer that children who had ééﬁééEﬁEEéa the more
sophisticated counting unit types, also constructed the higher

Monica; the counter of motor unit items was able to use in
'
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addition to the Counting All scheme, Separating scheme to solve
a missing-addend task. The counter of verbal unit items used
the next higher scheme; Counting From 1. Cullen; Jeff; Paris,;

and Valerie, the counters of abstract unit items used the
second highest level scheme, Counting On and also most of them
correctly employed the Recalliing Sums scheme. This is
consistent with the finding by Carpenter (1983b) "that children
initially solve (addition) problems with a Counting All
strategy and:that this strategy dgradually gives way to Counting
On and the use of number Facts (Recalling Sums)” (p. 23) . The
findings in this study are also consistent with Houlihan and
‘Ginsburg's {1981), that second graders use counting on
procedures more than first graders. But Cullen and Valerie who
were fFirst graders used more advanced Schemes than Monica a
constructed the most advanced schemes: For example, Monica was
of the same age as Jeff but she used lower level schemes than
Jeff and solved only a few more problems than Bendry, who was
18 months younger. Another significant finding was that Cullen,
although of the same age as Hendry, used higher level schemes
and solved nearly as many problems as did Jeff,; who was 18

probiems by r ~alling number .facrs. Another significant
observation was that John, Jeff, and Monica were from the same
‘second-grade classroom, just as Cullen and Hendry belonged to

the same first-grade classroom.




Tnsert Table 10 about here

usually used his or her most advanced scheme -o solve problems
‘{identified for that child) to solve problems with larger
addends. This relation between schemes and problems was
observed also within the specific schemes of the same
representation. For example, Jeff used the Counting On-Using
Abstract Unit Items scheme to solve problems with bo:th addends
less than 10 but used the Counting On-USing Motor Unit Items
scheme to solve those with one addend greater than 20. This
indicated that a child was more likely to use the most
efficient scheme to solve a problem if she was capable of
employing that scheme with confidence (minimum error). This
finding compares favorably with the hypotheses of Briars and
Larkin (1982) that when alternative strategies are available a
child will respond with the strategy that.results in the Fewest

indicating the child's awareness of increased error in
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hard; the children who used the Counting From 1 and the
Counting All schemes correcti§. solved only a couple of
missing-addend problems and none with addends gréétérrthéh 10,
The problems for the latter children had to be répéatéd a
number of times and presented in stages to enphasize the
actions involved before the childien succeeded to solve the
;problems. Steffe et al. (1983) made similar obsServations about
the performance of counters 8f perceptual, motor, and verbal
unit items when presented %ith missing-addend prob.sms. The
difficulty experierced by the counters of sensorg-motor items
might be partly due to their intention to establish one
collection when solving tasks: Thus they do not decide before
colinting to keep track of their counting acts beyond the first
intervieweér intervening, after the child has established a
collection for the given addend, and repeating the remaining

part of the problem.
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Subtracting Schemes

Subtraction is the inverse of addition; and therefore, it is
an operation that can be performed mentally (internalized action)
or executed materially as an observable action scheme. The

hand, the Recalling Number Facts and the Counting Up-Using

Abstract Unit Items schemes identified reflect internaiized

actions for subtracting.

Separating. This was the lowest level of the representations of
children's sibtraction concepts identified in the study. This
scheme can be compared to Carpenter (1983b), and Carpenter and
: Moser's (1982) Separating From strategy. This was the only scheme

that Hendry succeeded to construct, with guidance from the

1

uess an

Loy

interviewer. His initial scheme for subtracting was to
answer and explain by counting fingers equal to that number. For
example; to solve "5 - 2"; Hendry said; "4" and explained by
sequentially extending four fingers while uttering "1,2,3,4";
Five other children; €Cullen; Monica, Paris; Shani, and
Valerie alsoc used the Separating scheme (see Table 11): Monica,

shani and Val'erie used only this scheme to solve direct

subtraction problems (e.g. 9 - 6 = ). This finding was

significant in the case of Valerie; who was a counter of abstract

unit items;




after the Separating scheme. It was appiicabié only for solving
missing-minuend problems. Monica was the only counter of
sensory-motor items to use this scheme, but this was only after
she had been guided by the interviewer to solve similar problems
by; seeing the subtrahend and the difference (parts) as contained
in the missing-miniend (whole). Cullen and Paris were the only
counters of abstract unit items to use this scheme. ,
Ttiéi and Error Separating. This scheme was identified as a
higher level representation than the Separating and Adding All

abstract unit items. Even though the scheme appeared simple (from
the adult's view), the child who uSed it indicated some awareness
of the subtrahend and the difference as parts of the minuend
(whole). For éxample, to solve "(—_- 5 = 4)" with this scheme,

Jeff's inteéntion was to constrict a collection of eight items;

items will be four (the given difference). Thus when his first
constructed collection of eight items failed -o leave the
expected four items, Jeff added 1 item, formed a new collection,
and repeated the process.

Counting Up. This scheme was used on more occasions than the
Eédhting Down scileme. Only the counters of abstract unit items
used the scheme. Tais finding was consistent witn the failure of
the counters 6f‘ééﬁééfy—ﬁéEéf items to use the Counting On scheme

r

to solve addition prokblems: This scheme was; therefore,

identified as higher than the Trial and Error S2parating; Adding

All, and Separating schemes: The Counting Up-Using Perceptual




Unit Items scheme can be compared to Carpenter and Moser's (1982)
Adding ©n, with concrete objects strategy: Thé latter's €ounting
Up From Given strategy can be compaied to the Counting Up-Using
vVerbal or Motor Unit Items Scheme identified in the study.
Cournting Down: We identified the Counting Down scheme at a higher
level than the Counting Uo schemé. The subport for out hypothesig
is, first, vValerie used the Counting Up scheme to Solve a variety
of preblenis (see Tables 12 and 13), but she never used the “
CcunEing Down scheme. Second, Cullen used the Counting Down
scheme on only one occasion to solve "30 - 6". Third, none of the

Sy

counters of scnsory-motor items was able to count backward, even
with perceptual items, to solve a task. This finding was
consistent with that by Steffe et al. (1983) The latter explained
‘the inability of counters of sensory-motor items to count backward
as follows:

The .conceptual reguirements for se raratirg items

from a collection by =ountins ro.rward include the
understanding that a number word that refers to a

parti ular item of a collection also refers to those
items yet to be counted (p: 102);
The conceptual requirement for the child to use the €ounting Down

scheme using motor or verbal unit items, includes the ability to
use reversibility of counting: fn other words; the child must be
awarc that counting backward from; say 7 to % will involve the

gsame counting number words as when counting forward from 1 to 7.

Carpenter and Moser (1982) found that about half of the
first-graders in their study could not count backward a given
number of steps: Thiz finding supports the hypothesis that

first-graders are likely to experience difficulty in using

reversibility .of counting. Our Support for this hypothesis was
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scheme, besides John who used even higher level schemes. Carpenter
and Moser (1987) also found that the Counting Down Scheme was
difficult for children to use.

Recalling Number Facts

higiist level of the representation of subtraction. Hendry,
Monica; and Shani, counters of sensory-motor items, failed to use
any rccall of number Facts to solve subtraction problems. Their
gUcsses wore incol:ect and were fFollowed by more guasses. Earis;

Valerie, Cullen, and Jeff used correctly at least two of the five

Recalling Numbet Facts schemes /see Table 11). The latter three

Us6d the Recalling Addition Fact and Recalling Subtraction Fact
Tnsert Table 11 about here

schemes, in additiion to the Recalling Result By Guessing scheme.

These children succeeded to use only the Recalling Sum By Guessing

to solve addition problems. But their recall of facts were no

b .ter for subtractina than [or adding. This was rot surprising,

- = 4" by recalling "5 and 4 makes 9", he had to recall his

own number fact and relate it to the problem.
John used all the five Rcocalling Numbér Facts schi@nies. He

+ Al

also did not use any scheme that involved counting. Subtraction
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was completely an internalized activity for John, just as it was
for addition.

subtraction problems indicated that the child realized subtraction
as the.inversion of addition: However; with the exception of John,
the other four counters of abstract unit items did not use the

Recalling Addition Fact 1o solve direct subtraction prchiems (e:g.

18

Cullen and Jeff used the scheme o souve missing-

il
~ |

=__).

subtrahend problems; while Cullen, Paris, and Vaisrie used the

scheme to solve comparison-more problems (e.g: u¢w many more 5.5,

the child's input than 3, the interviewer's input) isee ¥able
5{(a)). Only Jeff used the scheme to solve equalirzing-add problems
{e.g. how many must the machine add to 5 to make 8): Alsé only
Valerie and John used the Recalling Subtractien Fact schemes: '
infer that direct subtraction problems trigger mainly counting in
the four .counters of abstract unit items, excludiny John. In fact,
as mentioned earlier, Valerie used only the Separating scheme to
solve direct subtraction problems. -
Steffe et al, (1983) have pointed out that a child has to be
able to partition a number (minuend) into parts (subtrahend and
difference), make a reversal of the parts if necessary, anc
coordinate this with reversibility of counting before realizing

that subtractiovn is the inverse of addition. The subtraction

example; "19 - 12 = " was presented to Christopher immediately

following "12 + 7 = " (see p. 108). We did not present related

addition and subtraction problems inmediately following one

T 70



re-present to themselves and reverse to make an inversion to solve

direct subtraction problems. They might have done so if

1l
[63]]
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subtraction and addition had been ~ompletely internalized,
was tor John. Because they could then re-present and solve
mentall - the related addition problems and check to see if the sum
was equal to the minuend. For example, to solve "24 -~ 12", John
recalled th addition fact "12 * 12 = 24", so he answered, “iz".
But John First tried "14 ¥ 12" and realized that "14" could not be
the answer, because the latter sum was 26 and not 24. The other
Four counters of abstract unit items would need to petrform
coiinting activities to find "14 + 12" and "12 + 12" before they
could use their knowledge of inversion to answer the original
'ptbbiémy "24 - 12", BuUt there was no need for these four children
to perfom two counting activities, when they could perform one
counting .activity to ¢otain the same result: We infer that these
four counters of abstract unit items did not face the same
situation with the_other subtraction problems, hence their success
iﬁ using the Recalling Addition Fact scheme: Our hypothesis is

solve addition problems.

R

0!
t
J|
bad |




Subtracting Schemes_and Problem Types

Hendry, Monica, and Shani, who were counters of perceptual,
motor, and verbal unit items respectively, used only the
Separating scheme to sclve all direct subtraction problems.
Hendry- used only blocks to solve all his problems, which were also
only direct subtractio - He, initially, used no correct scheme
for subtracting unti® the iﬁEéiV:iébééi' guided him to separate a
ééiiééEiéh of items representing the smaller number (éﬁbﬁféﬁéﬁa)
from the collection of items representing the larger number
{minuend)} to solve é.éﬁié problems. i twe of the problems
presented to fiendry involved numersls on card as inputs; the rest
were f)téSéhtéd with blocks in sandwich bags as inputs: ﬁéhai’y

could not use his fingers to solve any problems in which’ the
minued was greater than fives

Monica used the Separatina scheme to solve also
missing=subt: thend and equalizing pr vleris. She succeeded to use
the Adding All scheme to solve missing=minuend problems only after
some initial guidance from the interviewer. But she showed no
uﬁucrstanaing of thec rcomparisSon-more probiém; "how Wany more is

five thai three"” She said, "five is lesser than three", and
failed tov solve the problem, despite the fact that she was made to
look at her five extended [ ingers and three extended fingers of
the interviewer. She, however, understood and solved
equaiizing~téke away and equalizing-add pioblems involving numbers

less than 10 (see Tables 12 and 13).




T

SN

e

e

Shani useéd the Separating scheme to solve also the
missing-subtrahend and miésihg;mihUéhé problems. She used her
fingeérs more than blocks to represent numbers in the problems.
Unfortunately her tape whileé solving compariSon and equalizing
problems could not be used due tou malfunctioning of the camera.
She also missed school on two days make up days.

We infer that the counters of sensory motor items used only
problems. The use of the Adding All scheme by Foni ¢a wasg
triggered, when she was auided to see that the subtrahend and
difference combine to mske the minvend. But this scheme is
consistent with Le: scheme fo:r addina, tiat is, Counting All:

There was no simjle ielacionship botween the schemes and
probiem types for the couuteic ¢f o™z*rrsct unit items. However,
individual children tended to use @éfEiéﬁiaf schemes for some

. problem types. For example, Valerie used only the Separating
scheme and “~calling Result By Guessing schemes to solve all

the Recalling Addition Fact Scheme to solve "9 = 4%, but

used the Trial and Error addition to solve "24 = 12" and "48 -
24", Furthér support for our hypothesis was given by both Jef: and
with larger differences. For example, Jeff solved correctly "13 =
___ = 9" by using the Colnting Down To- USing Verbal Unit Items
scheme, but failed to solve the very next problem "34 - _____ =.20"
with the same scheme. Similarly, Cullen and Valerie used the



Recalling Addition and Subtraction Fact schemes to solve
missing-subtrahend probieﬁ; when the minuend was less than 10, but
they used the ééﬁéfétihé scheme for larger minuends.

Cullen, Jeff, Paris; and Valerie initially found the

missing-minuend problems difficult; so they used lower level

schemes; but later used higher'level schemes. For example, -Jeff;,

_ - 5= 4" but later; he was able to solve - 7= 11" by
using the Counting Up-Using Verbal Unit Items scheme.

‘A1l the five counters of abstract unit items had no
difficulty in understanding and solving comparison and equalizing
probiems: The children's schemes for selving these problems were

. the Separating scheme to solve the equalizing-take away problems.
No child used the Counting Down scheme to solve comparison
‘problems. Jeff's use of thc Counting Down scheme to solve
‘equalizing-take away problems was consistent with his use of the

schemie for subtracting.
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Table 1

Input Numeral

Output Numeral

16

First Addend Sccond Addend B sum

4 2. -

2 5 -

5 2 -

4 3 -

; : -
5% 3% -
8 3 -

3 8 -
5% 6* -

4 ’ 9 -

4 10 -
10 4 -
G * g * -
8. 7 -

4 11 -
13 15 -
: 23 10 -
30 13 =
34 P 10 -
23 30 -
45 16 -

* Objects in a bag

77

# Pictures on a card

§0




Missing-Adden

d problems presented with the function machine

output Numeral

First Addend

Sifi

N

wyi

15
30
10
34

~i

~J|

11
13
25
31
44
44
44

CS\ 9 13
- 11 15
- 10 24
- 10 44

* Objects

in a bag

78

81




Tabi.o 5

Subtraction Problems Presented with the Function Machine

Input Numeral Output Numeral
) Minuend Subtrahend Difference

5 5. -

O GX =

6 4 -

G 2X -

O L2 -

7 <) -

! S q b

; 8 35X =

g 3 -

B z -

Y 7 -

g G -

9 5 -

R 3 -

I3 4 -

b 7 -

[8 1 -

18 7 -

24 12 -

30 S -

35 10 -

: 18 24 -

Lepend: - child to figure out
x biocks in sandwich bags
* pictures of animals on cards
.
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1
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Table Sin)

Compurison - More Problems presented with the
Ffunction Machine

1 - - ToTT T s T R . - . - - e e
7 - laput. Numeral Output Numerial
T Child's | Interviewer's

R 9 -

1S O -
| 12 25 -
D25 13 -
i — - —

Tab)  5(hH)
Comparison - Less D~ .ms Presented with the
Funct ‘' ine

i B “ ; - I

| o lnput Numerado_ (. tput Nuii i
] Tildts Intervicewer's '
|

o 11 -
135 1 .

18 O z
s 1 -
ST L3 -
: 10 23 =

SO G

Lepend: - ChHild to fipure out

81
84

ERIC

Aruitoxt provided by Eic:



Table o(a)

Ll iing - Add Problems Presonted with the Faaction
Machine

é Input Numer:d Ortput Numeral
I Child's Interviewer!'s

! 3 8 ! -

§ B X -

| - 14 z

‘ [ 1= )

. . 13 -

1

Tihle o { l)j

il i sing -~ Uake Awidy Problems Presented with the
Fuanetion Michin o

! [rput Coiieral | Output Numeral
; - ! o 7 ! S
! Chitd's | Intervicewer!'as

) 5 -

15 9 -
S i | -
" 18 -
50 R -
1 15 -

ovid: - chitd to Tignre on

ol
[

00}
J

o
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Aruitoxt provided by Eic:




Table 7

Children's Description of Addition by a i'unction Machine

.~ Name of Child | Desctiption of Addition

Job, Jdeff Add

Cullen ' ndding

; Valerie, Paris Pt ... together to mmake
’ -
| tonica, Shani Take away ... put then on here

¢ondry

Make mere numbers




Children's Descrivtion of

f’a’ bl e 8

Subtraction by a Function Machine

John

Cullen, Jeff
Pariw, Valerie
Shani

Monica

Hendry j

Descripvion of Subtraction

Subtract
Teke away

Changed it from 6 to 4
It touk (remove) two ~way

“ake less




Table 9. Children's Adding Schemes

NANT OF CHILD

John | Jeff. JCullen{Valerie| Paris Sheni| Monica | Hendr

Hising Doubles / ' I

Sums ’
l
\
\

by Guessifig IR j

dxn' On By Tens And Ones [ e ——
: Uelng Abstract u/i o ‘V / N

capting | Using Verbal /] S , / /
i ClUsine Sotor w/i : N A T B R

Tsing Merceptual e/ / / ik

e - JERPEED SV

'rH%ingAMdibi Ahfi

-~
~— 1

' Uing Perceptual /i

e e = —— k1o

brom |

1'naratod

eur
L | Licﬁllon\

v .
1l | :
| Yn qQ]ﬂCd i

Collections | S S i
= i PrE——— i e e

[ S,

e —— i A e e e o =

Lerewds e hene weed m ChiTd

d'iounitoitens .




Tabte 10, ooding Schews v “HETan 2robiens

? Direer U oon 0 Missonz-Addead Yissing: \ddend
; CSCHEE Direct Maoon o iss g AJdLQu Missing- Addend
| AL L, N . _ . Co=
i : ¢ h 4 o+ - L I + b = L
| : o R S il il

o S N B

- il Using Place Vatue o | - -
CRecalling't AT }—
A DT 8 Decade Jo ‘
l aums ’—'-fﬁ - - ; A
| CUsing Doubles Lo e I ————— |

| BV Guessing Jo U\ Jo Je : Jo e U

|
o —— -

C Wlding Oii By Tens dnd umes I

| Using Abstract wi | ¢ UJe o P
| Ulﬂ-[lﬂg Using Verbal w/i . U o P Je v Je
] o _ o o T T _ y ko o B
; dsing Motor u/1 CVode ! ] e ) S ——
. ) o L o * | ¥
o Ui Perceptuat u/i | 1 Je

T
[S
!
'
|

Using Verbal i/ s S R

CCounting [ oiee oo e ‘ -
S D Using Notor uf: b S P P

POt s ing perceptual u/i Sk S

- =

| o E
- In Separated H

Ctounting | Collections L r R

[n Joined 7
Collections oL H .

-
i
|

Ul
\

g

M

-

CSeparating |

| i e - e

zpend: €-Culten  H-llendry  Je-Jeff  Jo-John
MiNofica  PIParis  S:Shani V. Valerie
u/1 u it 1tems
* one aduend is between 10 and 20

% one addend is greater than 20

9

86

e ]
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Table 11 Childven's Subtracting Sehemes

- | ' aane of Child
SCHEYE | e - - e
, Lo gert o Qullen Valarie iy S, i | Hlenar
— I ‘ S A 3 LI LI
I Derjved bacts . SR N S b
! il : B SR ARpUS S ST S - -
; O UL TS . |
; Number fact by Irul § Loy ;
e R N
N oy T T T R / ‘l .
Recalling Fsuberaction Fact ) L L ,
S S U e i —
Wdltion Fiey o / Iﬂﬂ; L .
/ - - L
o | Result @y Duessing | / I o
Cotne s g Veril ] o
spghn Uity Wtor /i /
o e
; Using Pevceptual w/i - {5 o b | oo L
— - J——
. B !
BETIETS I ,
ity by L '
i . v !
Dok L Metorawdomoo | y — I
Hith T i |
) Pereeytinil /1 -
T ]
(3\)l111til12 :Uf%ing_ “\b.\'lll._'{lCt 1w B _i__ ) / _ 5 - R
i p s ing Vcrha;ru/i / J
| s ine Sotor ' N ! /
} ; ) ) n ’ j A j / ,}
‘ S T ;
Using Perceptwil u/'i /
S R AT L /
frial and Breor Separating
—— e
Adding M / ] j
- i B — —-
Senaratine : ' ' ' ' '
~depdrating j / / / / I
Leoond: u/i unit items '

! schene used by child

8



Table 12:

Ciiidrenis Sehenes and Subtraction Probléds

i

Dirvect Suitraction
- b=

Missing- Subtrahend
a - = C

Nissing-Minuend
-b=s¢

e

¥
o

o g e

x\[ ]st By
Trlal And Error

\
j IEFE Fict,

Jo

Recallinmg 1 . oooo.-o
S Sphtractiaon .

| e -
Addition Fact

e g o e, s

Result bv ,necxmnﬁ

I o e
i Using Verbal u/i

\) Ol n

(, nur [

Coipe Notor wli

[0

\
|
| ‘
b T e
|
Y
|
|
l

15t Tercepiunl

IR DTS G

g ¢

dotor /i

T et A At -

ihrmﬂgmlu/L___m___"__p

S

+ Abstract u/i

I

—pr—

~ s e e,

Ve 4444444l,u/5

et e e = i e

- Notoy u’

e

- ———

[ ¢ e ——— i —— c—

: - . e )
e RS R !

o e e T Tt

Sl

fo-Jeff

-lendry
S-Snan:

Pobayis

hetwoen 10 and 20

Chpariting e
gopd:s 027 M ed
Yooncd
u/iounit liens
“rwinvend 1s

% TlﬂUCll 13

greater than Jl
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Pable 15, Children's Schomes, and ( um jarison and Fqualizing Problens

| S ; cmpnr son | Lomparicon Lqual;;1ng~ lqua .Jngk
e nore less add take: away

S m——— T o e = JR—

] _ +
i Fived bdct o T
[ -

- Siiber Fact By v
Recalling rial and Error o L L

} Subtraction | . I
i Wdition act SN LI S Je
\ A —— T T
Clesult By Guessing C o U ot o
S S L
ising Verbal ufi |
ount hown | e ! A *
T | Using Motor u/i | S I S—
i lHIIU Porcoptu U
S ‘}L T T = R I
;‘_”\ HL f\hSTT?lCt U/] ‘ \,](' ) : —i '—__'j:'j::j-:: - —
Connt iy ! . v Ty x ! )
‘ CUsing Yerbal off L \ |
i A T ‘ ’ ’ ’
' CUsine dotor U/l STt I Je v L
K | x | -
! Halnw Pcixﬁmiﬁglguf¢4, B p -
Sepirat g ‘ ; \ : Pt VM
e e e e — ' - oo/ LA e e e ]

Lecend: C-Cullen de-defT Jo-John
SoMonica  P-Paris Vidlerie
Laryer glen munber 1s between Toand 20 :
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Figure 1. Subordinatien of lLearning to Tcaching

Teacher

Student

Knowledge

Figurc 2. Subordindtion of Teaching to lLearning

.90 538
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Perceptual | Figural| Motoric| Verbal | Abstract
Counter of items 1tems 1tems items items

e R

Abstract u/items* / ./ / / o
Verbal u/items / / 7/ o
Motor u/items / / o X

Figural u/items |: / o X X

Per ~eptual u/items o X X X

*u/items: unit items

Legend: o most advanced items

/ more primitive items

x undifferentiated items

Frgure 3: The development of counting
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IN
s

él\\\\\\\\\

T Partition

ouT

Front view of a Function Machine with

Figure 4(a): |
two Input Holes

IN
== ==
\\7 . ) ) 7 |
: \ Partition
{holds input numeral)
=
. ouT

Front view of a Function Machine with

Figure 4 (b). ront view of
one Input Hole
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Input* "S5"—<g ~ _— Input* "3"

Partition

(holds input cards)

o S p—
OQutput™* ”8"E<;6Uf

¥ Zard with pictures of animals

Figure 5(a). Addition by a Functior Machine

- p—— [ B —1ﬁﬁﬁfi 1o
* 1) " P
Input 6"~ IN INk//

\\
~~rartition
(holds input cards)

e

Miipisiipx 1AM I
OQutput 4 &< OUT

* card with picturcs of animals

Figure 5(b). Subtraction by a Fuiiction Machine
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